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Propagating waves in one-dimensional discrete networks of coupled units
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We investigate the behavior of discrete systems on a one-dimensional lattice composed of localized units
interacting with each other through nonlocal, nonlinear reactive dynamics. In the presence of second-order and
third-order steps coupling two or three neighboring sites, respectively, we observe, for appropriate initial
conditions, the propagation of waves which subsist in the absence of mass transfer by diffusion. For the case
of the third-order(bistable model, a counterintuitive effect is also observed, whereby the homogeneously less
stable state invades the more stable one under certain conditions. In the limit of a continuous space the
dynamics of these networks is described by a generic evolution equation, from which some analytical predic-
tions can be extracted. The relevance of this mode of information transmission in spatially extended systems of
interest in physical chemistry and biology is discussed.
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I. INTRODUCTION the context of phase transitioh25].
So far the role of this particular form of spatial coupling
The origin and modeling of wave propagation in purelyin the onset of nontrivigl spatiotempqral d.yna.mics.has not
dissipative systems as opposed to systems possessing ineRREN Studied systematically. Our main objective will be to
encountered in mechanics, electromagnetism and fluid dy=N€d some light on the possible influence of such nonlocal

namics, has attracted wide interest and motivated a largactive processes on the propagation of waves. To this end

amount of theoretical and experimental studies. Typically)’viiggr(nwﬁ)zge d;hnrgriilcesvetlk?eogigsrsectrelptéz?l:lé?xgbl(\:lll?)ssg\(;g:ur-nass_

TQ?S&ZE’?E%ﬁfJ%ﬁ%ﬁZ‘ﬁSifs”"s“ui'%eaiexi‘ﬁf;{iﬁLSeéﬁfr;kiiafwn laws, and the continuous space limit of the DL rate
o Lo . quation, hereafter referred to as continuous nonl@eiL)
reactorg[1-3], living cells [4-7], or individuals in an eco-

. ) e dynamics. We focus on the case of one-dimensional, one-
syster{8—12] which are coupled in space by diffusive trans- gnacies models with interactions involving only first neigh-

port. In the continuous space limit the dynamics of suchyqrs of each site, but the extension to more intricate systems
systems_reduces to a set 01_‘ reactlon-dlf_fus,lon equationss strajghtforward.
There exists an array of analytic and numerical tools, starting The general formulation is presented in Sec. Il. Special
from the classical work of Kolmogorov, Petrovski, and Pisk-emphasis is placed on the spatially continuous limit of the
ounov[13], allowing for a good understanding of the onsetevolution equationithe CNL equationy from which some
and of the essential quantitative properties of the wave frontaseful analytical results can be extracted. As a first illustra-
and related phenomena generated by these equations depetidn, a second-order SchlybFisher model involving two
ing on the values of the parameters, the initial and the boundaeighboring sites of the network is studied in Sec. Ill. Since
ary conditiond9,14]. this system admits one stable and one unstable state in the
In this article we explore the behavior of discrete systemiomogeneous limit, one expects the propagation of waves
for which spatial communication between the constitutivefor appropriate initial conditions. We show that the reactive
elements of the network does not entirely rely on diffusion orcoupling is equivalent to a nonlinear effective diffusion that
any other classical mass transport. Reactive dynamics ifpodifies the shape and the velocity of the propagating front.
such systems is not purely local, but involves the state off special interestis the existence of propagation of waves in
neighboring units as well. In opposition to the classical pro-n€ total absence of diffusion. We next consider in Sec. IV a
cess of mass transport, the precise form of this new spatidflird-order model giving rise to bistability. The effects asso-
coupling depends on the mechanistic details of the dynaml(—:!ated with r_10nlgcal dynamics are here even more surprising,
cal process considered and is thus expected to be nonlined'c® the d]rec_tlon of propagation pf the waves is reversed
and system dependent. A typical example giving rise to hen Q|ﬁu§|on is Iow. We give for this unexpe'cted feature an
analytical interpretation based on a perturbative development

coupling of this kind is provided by reactions on low- ¢ the af ioned CNL luti ) Th )
dimensional supports encountered, for instance, in heterog@— the alorementione evolution equation. The main

neous catalysi§l5—24. The behavior of these systems can conclusions and the possiple implications and further devel-
often be mapped into a spinlike dynamics, for which there®PMents are summarized in Sec. V.
exists a rich literature from statistical physics, particularly in Il GENERAL FORMULATION
We consider in this work one-dimensional networks com-

*Email address: Yannick.De.Decker@ulb.ac.be posed of a large numb&t of interacting units. The state of
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each of the localized units can be modified bylifferent  teristic scale at which the concentration varies appreciably.
elementary processes involving adjacent sites, Under these conditions, one can expand the local concentra-
tion in the form

j=+1
2 2 va(iTDXa(i+]) a?_,
a j=-1 c(rta,t)wc(r,t)taVc(r,tH7V c(rit)+---.
K, j=+1
- > __21 va (DX +]) Keeping the terms up to the second ordeg,imne obtains an
« = evolution equation of the form
p=1,...r, P
SrerD=fcr, ) +g(c(r,n)ve(r,n)?
a:]., n,

+D(c(r,t))V3e(r,t) 4
i=1,...N. 1)

referred to subsequently as the CNL evolution equation. To
HereX (i) represents the population of species the unit  understand the meaning of this equation we recall the form
i. Thej’s are the first neighbors dfand v, ,(i +]), VZ,,,(i of tradijtiona_ll evolution laws as deduced from the mean-field
+j) are the local stoichiometric coefficients of, respectively,approximation,
reactant and produat for the elementary step considered.
The evolution of the local state variakig(i,t) (such as, for
example, the local concentration Xf,) at each site can be
described by a differential-difference equation containing a
nonlocal interaction ternh, and, if the elements are free to For the systems considered hgaesingle dependent variable
move on the lattice, an additional coupling by ordinary dif- ¢(r,t)] this evolution law can be derived from a potential
fusion, functional

%c(r,t)=f(c(r,t))+ DV2c(r,t). (5

d _ _ ] )
aca(l !t):ha({ca(l ’t)}’{ca(l i:L!t)}) EC(r,t): - F(r)f[c(rvt)]y

r
+ LI+ 10+c,(—-10-2c,( 1], Hc(r't)]:mw’t)]_f%D[Vc(r't)]zdr,
2
_ _ - N wherelf c(r,t)]=—[f[c(r,t)]dc(r,t) is the kinetic poten-
wherel is the hopping probability. The specific form bf, tjal, reducing near equilibrium to the product of a free energy
describes how the state of the sites modified by the dif-  function and an Onsager coefficient. In the case of multista-
ferent elementary processes. In the sequel it will be modelegi”ty, the state with lowest{ c(r,t)] is the most stable state,

by an extended, nonlocal mass-action law and the other states are metastable. We clearly recognize in
) ) Eqg. (4) corrections to the usual mean-field evolution laws
ho({c.(i,t)}{c.(i=1t)}) (5). Comparing these equations, we note that they both com-
prise a local MA evolution lawf (c(r)) and a diffusion term.
=> K[ V5 (1) = v ()] This term is characterized by a diffusion coeffici@ntvhich
P is essentially constant in the mean-field equation, but
j=+1 concentration-dependent in E@), typically involving the
XTT T1 [co(i+j,t)]7e o+h, (3)  sum of the traditional diffusion coefficient and of contribu-
o i=-1 tions arising from the nonlocal dynamics. Finally, the CNL

equation displays in its right-hand side an extra dissipative

For the sake of simplicity, we limit ourselves from now on to termg(c(r,t))[Vc(r,t)]?. A similar term appears in the de-
two-species models with conservation of the total concentraterministic limit of the KPZ equatioi26]. There are how-
tion. There is, therefore, only one active species, the seconeler some substantial differences: the presence of a state
one being related to the vacant sites of the lattice, but theependent coefficient multiplying the Laplacian and gradient
analysis could be extended to more intricate schemes. square terms and the scalar term reflecting a nontrivial local

To obtain some analytic insight it will be useful to con- dynamics. Finally, note that contrary to the mean-field equa-
sider a continuous-space approximation of Ez), taken by  tion, the evolution law(4) cannot in general be derived from
introducing the spatial coordinate=ia, wherea is the lat- a potential.
tice parameter, i.e., the distance between two first neighbors, Before switching to the analysis of specific classes of
and supposing that this parameter can be taken small in conmodels, we compile some general conclusions about the con-
parison with the total size of the system or with the charactinuous limit (4), in connection with wave propagation.
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Using standard techniques, we introduce the change of vari- 1
ablesr —r —uvt, wherev is a constant velocity. Equatid#d) S —
then becomes 08 | \\ ——— DNL
\
—vU'(2)=f(U(2))+9(U(2))[U'(2)]*+D(U(2))U"(2), 0s | |
(6) U(z)
where U(z)=c(r —vt,t) and’ denotes derivative with re- 04T
spect toz. This equation can be mapped into a dynamical \‘
system involving the two variabled (z)=c(r —wvt,t) and b2 \
V(z)=U’(z), described by the following ordinary differen- \\‘
tial equations: 0, = = 20 L
z
U'(2)=V(2) , _ ,
FIG. 1. Shape of the front obtained, respectively, from the dis-
V'(2)=[-vV(2) - 9(U(2))V(2)? (7)  crete localized rate equatighA) and the discrete nonlocal dynam-
—f(U(2))]/D(U(2)). ics (DNL) for the Sclhgl-Fisher model. The spatial variable iis

—vmint, 1.€., we are in the comoving frame in a discrete network
Provided thaD(U(z)) #0, the linear stability of the steady- composed of 10000 sites, with periodic boundaries= 1.0, k
states U, V<) = (c;,0), with f(c;) =0, can be easily tested =0.1, T" is here 0.01. The initial condition is as described in Egs.
and to each state we may associate the two eigenvalues g9 and(15), and dimensionless units are used.

the corresponding Jacobian matrix, . .
P g reducing the problem to a one-species model. The DNL

v 1 2 t(c) equation corresponding to the mechanism reads
w;=— +— -4 , (8)
2D(ci)) 2 Vp(c)? D(ci) d

k
o= ?1(1—c(i))[c(i +1)+c(i—1)]—koc(i)

wheref’(c;) is the first derivative of (U(z)) with respect to
U(z), taken atU(z)=c;. This quantity will prove useful in
estimating the minimal velocity of waves between unstable
and stable states, in comparison with the mean-field predic-
tions where the diffusion coefficient has no dependence in =kqc(i)(1—c(i))—kyc(i)
c; . Note that the linear stability of the fixed points does not
involve explicitly the dissipative terrg(U(z)).
In the following two sections we consider two prototypi-

cal systems in which unexpected behavior of front propaga-
tion is observed, and show how these phenomena are itwherec(i)=cy(i) andAc(i) denotes the discretized Laplac-

+g[c(i+l)+c(i—l)—20(i)] (12

+ Ac(i), (13)

I' kg .
E+E(1—C(|))

duced by the nonlocal dynamics. ian. The 1/2 factors before the autocatalytic and diffusion
steps come from the fact that the nearest neighbor to the right
IIl. WAVE FRONTS BETWEEN STABLE or to the left contribute with equal probability. The form of
AND UNSTABLE STATES this evolution law allows one to understand how the discrete-

ness of the network, together with the nonlocal character of
We first investigate an irreversible discrete, two-specieshe reactive events, is indeed responsible for the appearance

Schlggl-Fisher model described by the mechanism of a concentration-dependent diffusion coefficient in &
_ ) ) ) In the homogeneous limit, and as longkas-k,, Eq.(12)
Xo(i) +Xq(i£1)—=Xq (1) + X (i£1) ky, (9 admits one stable steady stai® = (k,—k,)/k;) and one
) ) unstable steady statef{=0). In the corresponding spatially
Xa(1)=Xo(1)  ka, (10 extended system, if only thEa?/2 term were present in the

) ) ) _ coefficient of the second derivative, one would obtain a wave
Xi(D)+X(i£1)=Xp() +Xy(i=1) I'. (1)  propagating from left to right if the lattice is initially pre-

. . . . pared so that
The first step describes an autocatalytic process producing

X1, the second one a simple decomposition, and the third c(r,0)=c; as r——ox, (14)
step an exchange reaction. Following the conservation law
introduced in Sec. IIX; andX, are here to be interpreted as, c(r,00=c, as r—-+o. (15)

respectively, the population of sites of a lattice filled with

reactantX; and the empty sites. In the terminology of sur- Moreover, we know that if the front between these two states
face reactions, e.g., Eq9) can be seen as a cooperativeis sharp enough &t=0, the wave propagates with a given
adsorption, Eq(10) as a spontaneous desorption, and Egqminimal velocity. Figure 1 depicts the composition profile as
(12) as diffusion(random walk induced mass transport. The a result of the numerical solution of such a reduced form of
corresponding local concentrations satisfy{i)=1—c,(i), Eq. (12) (full line) along with a numerical solution of the full
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Eq. (12) itself (dashed lineson a discrete lattice subject to 6
an initial condition in the form of a Heaviside function. We
see that the wave character of the solution subsists, but that
the profile of the front is modified.

In order to assess the relative roles of classical diffusion
and of discrete delocalized dynamics in the wave propaga-
tion, we resort to the continuous limit of E¢L3) described

by
2 2

ﬁc_k 1 « l'a 1 1 2
e el c]—k,c+ T+T( c) C.

(16) 0 5 - 10 15
Note the absence of the gradient square term expected to FiG. 2. Evolution ofv,,;, as a function of’, obtained from the
appear in the most general cafgq. (4)]. In the two- integration of Eq(12) (dashed ling from the analytical prediction
dimensional phase spa€dg(z),V(z)) introduced in Sec. Il, [Eq. (17)] with a=1 (crosses and from classical discrete MA
the dynamical system in which this equation reduces admitsquations(plain line). Parameters,, k,, initial condition, units
two fixed points: ¢4,0) and (0,0), whose stability is deter- and system size are as shown in Fig. 1.
mined by
was previously supposed to be small. We suggest that Eq.
v +1\/ v2 4f’(cl) (16) can nevertheless be regarded as a generic equation
W D(c,)? D(c,)’ wherea plays the role of a parameter just likg andk,.

1 2D(cqy) 2
1 > £(0) IV. WAVE FRONTS BETWEEN TWO STABLE STATES
v v
“0= " 5p(0) =5V D(0)2 —4 D(0) We consider now a scheme including a third-order step in
addition to the bimolecular ones studied in the preceding

Sincef’(c,)<0 andD(c;)>0, the corresponding state is a S€Ction,
saddle point. The nature of the other fixed point depends on
the sign ofA (the discriminant inside the square rpaind

sincef’(0)>0 we have a stable node =0, and a stable
focus otherwise. There are thus heteroclinic trajectories link-

Xo(D)+ X (12 1) =Xy () + X, (i £1) kg, (19

Xa(i)+Xo(i+21)+Xy5(i—1)

ing the two steady states in this phase space. We note that X)X (1) +Xo(i—1)  ky,  (20)
U(z) must be positive so that the system cannot “spiral '
down” to (0,0), and thus that\ should in fact be non- X1(1)+Xo(i = D)= Xy(i) + Xg(i=1) T, 21)

negative. This condition gives us the minimal velocity

hereafter referred as “trimolecular-bimolecular” model, and

I'tke (17) whereX;, X, can be interpreted in a similar way as before.

vom=2a1/(k;—kp)

Note that in classical mean field, MA rate equations the dif- A. Formulation and numerical results

fusion coefficient is simply"a?/2, leading to Taking into account that, (i) +c,(i)=1, the correspond-
ing classical MA rate equation reads in its continuous limit

T
MA
oM =23/ (ky—Ky) = (18) J ra’
min ) c=kyc(1—c)—k,c(1—c)?+ > Vie. (22

ot
A striking difference in the behavior of these minimal veloci-
ties is the presence of waves propagating with a given spedtidisplays a cubic local evolution law admitting three homo-
in the total absence of diffusiod’0), when only nonlocal ~geneous steady statekif=k; : ¢;=1, andcz=0 which are
reactive dynamics is considered. The numerical integratiotable, anct,= (k,—Kk;)/k, which is unstable. The analysis
(Fig. 2 of the discrete equatiofi3) fully confirms this con-  of the kinetic potential/{c] shows thatc; is more stable
clusion. We have here a reaction-induced propagatiothanc, if k,>2k;, and vice versa. Owing to the cubic form
mechanism to which one may associate a concentratiorsf f(c) there exists a unique propagation velocity of the front
dependent effective diffusion coefficient subsisting as long abetween these two stable states in the case of a spatially
the second-order reaction takes place, even when the hopxtended system. If the initial condition is such that
ping probability toward adjacent units is strictly zero. In

other words, in such systems, reaction can be seen as being c(r,0)=c; as r——oo, (23
itself a mode of spatial communication. We note that in the
continuous limit this effect is penalized by a factsrwhich c(r,0)=c3 as r—+om, (29
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FIG. 4. Propagation velocity as a function Bffor the TBM

' FIG. 3. Sh.ape of the front beMeen the two stable states of th?nodel, taken from the MA predictiongEq. (25)] (full line) and
tr|molecular-.blm.olecular model,.W|tf.kl=0.l, k,=0.25, andT’ from integration of the DNL equatior26) (dashed line and
=0.1 (the size is the same as in Figs. 1 and Phe results are 55565 The parameterk, and k,=0.25, the initial condition,

obtained from the discretized version of mass-action rate(E3.  njts and the size of the system are identical to those in Fig. 3.
(MA) and the discrete nonlocal dynamif®NL, Eq. (26)]. The

initial condition is as in Eqs(23) and(24), dimensionless units are

in force and the network is composed of 10 000 sites. constant velocity are indeed observed. On the other hand,
when the full discrete system dynamics is considered, the
a wave will propagate with velocity direction of propagation can be reversed compared to that of
. the traditional mean-field waves when classical diffusion is
JMA _ [koI'a 2k1—k2) (25 weak, as seen in Fig. 4. Specifically, for a given initial con-
prop 4 k, )’ dition of the lattice, considek,>2k,. The statec; should

then be the most stable state and invade the region where the
| ' - concentration i€, , the velocity of the front being negative.
means that the more stable stateinvades the region with |, contrast, we observe that for small hopping probabiiity
coveragec, . _ in the discrete dynamics tHemogeneously less stable state
The discrete and nonlocal model is on the other handy,,qes the other one, while the usual behavior is recovered
governed by the evolution equation for high diffusion probability. The classical mean-field rate
d Ky equations are thus inadequate in this case, since they predict
acizi(l—ci)(cHﬁ Ci_1)—koCi(1—ci.1)(1—ci_q) exac.tly thg opposite of what is observed in a certain para-
metric region.
The origin of this discrepancy is to be sought in the sys-

One can check that, ik,>2Kk;, vyp, is negative, which

+5 (Gt e 20) (260 tem’s geometry. With the initial condition chosénetwork
fully covered on one side and empty on the other)sadel in
whose continuous limifup to ordera?) reads the total absence of diffusion, particles located at the bound-
ary or within the fully covered zone cannot desorb through
ic=klc(l—c)—kzc(l—c)2+a2k2c(Vc)2 the trimo_lecular step. The system behaves as if the first au-
at tocatalytic step only were effectivgatek,). If so, one ex-

pects the wave to travel indeed in the observed direction,
S Ky ) . S o
+a?l -+ =(1-c)+kyc(1—c)|V?%. (270 sincec=1 is then the only stable state. If this simple expla-
2 2 nation holds, one should expect that the wave propagates as

In addition to a density-dependent diffusion coefficient thispred'Cteq by the mea_n-fleld if only one full §|te 'S |n|t|ally
equation displays a nonlinear “friction” term of the form Présent in an otherwise empty surface, or if the dynamics
a%k,c(Vc)? as expected from Ed4). One can easily check takes place on a Iaf[tlce of hlghe_r connectivity allowing for
that, as anticipated in Sec. II, owing to the nonlinear Spaﬁa]‘avora.ble'conflguratlons for the tr_lmolecular gtep. Numerical
coupling induced by reaction E426) does not share the investigationgnot shqwn _her)slndlcate thf_;lt it is indeed S0,
property of the mean-field Eq22) to derive from a poten- OF at least that the direction of propagation is as previously
tial. Furthermore, in absence of mass transfer by diffusiorfXPected.
(I'=0) it admits a pronounced multiplicity of inhomoge-
neous steady sates, corresponding to isolated lattice sites oc-
cupied byX; interrupted by islands of empty sités com-
prising at least the first neighbors of the occupied sites. We may take advantage of the continuous limit in order to
Figure 3 depicts the result of numerical integration of Eg.gain an analytical understanding of the front propagation. In
(22) (full line) and Eg.(26) on a discrete latticddashed one space dimension and after eliminatmdpy redefining
line). As can be seen waves with a given front shape andhe space variabler (~r/a), Eg. (27) becomes

B. Analytical approach
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9 ) where the right-hand side displays the nonlinear terms gen-
1 C=Cc(1—o)[ki—ky(1-c)]+kae(Ve) erated by discreteness and nonlocality. It is given by

1 R=—v1Cy+ Kk1Co(1—Co)2—2¢Cq(C))?
+ 5[ +ky(1-0)+2kc(1-0)]V?c.  (28) v1Co+ K1Co(1~Co) o(Co)

1
— =(1—cg)(1+4cy)cy. 3
We propose to determine an asymptotic approximation of the 2( o)l 0)Co 37

front solution valid for small values df; andk,. Specifi-

cally, we introduce the small parameterand k=0(1) de- Note that the left-hand side of E(B6) admits the nontrivial

fined by solutionc,=c; . Solvability of Eq.(36) (a bounded solution
for z— =) then requires the condition

e=k, and k,=ex, (29
and seek for a traveling wave solutior c(z,&), wherezis f R(z)cadz=0. (38
given by *°°
7= \/Er—vst. (30 Using EQs.(37) and (33) and evaluating the integral in Eq.

(38), we obtain an equation for the velocity given by
In terms of Egs(29) and(30), Eq. (28) can be rewritten as

1\[
1 =— 5\ 50T 39
v =6(1-0)[1- k(1= )]+ exce’ >+ S[T+e(1-0) 1= 7 Vgl (39

+2exc(1—c)]c”, (31  We note that for largd'v; is negative and proportional to
JT'. This can be expected from E(8) since the diffusion
where prime means differentiation with respecttaVithout  coefficient is constant in this limit. The new point is however
loss of generality, we consider the boundary conditions inthatv; may change sign aB decreases, in agreement with
troduced earlier the numerical findings depicted in Fig. 4. Specificaby,
changes sign df =I"; where
c(—»)=1 and c(«)=0. (32
, , I'e=«;'and «;>0. (40)
Setting e=0 reduces Eq(31) to the Fisher-Kolmogorov
equation with cubic nonlinearity and constant diffusion. The
mean-field description is therefore recovered in this limit. If
one further sets =0, Eq.(31) admits the simple front solu-
tion joining the two stable states

The second condition implies thij>2k,, a condition that
we discussed in the beginning of Sec. IV. The values of the
parameters used for the numerical study in Fig. 4 lare
=0.1 andk,=0.25 meaning, using Eq29), ¢=0.1 andx
=2.5. From the expansion of in Eq. (35), we determine
1 (33) x1=>5. Then from Eq(40), we obtainl",=0.20 . . . which is
1+ ex( \/Fz) very close to the numerical estimate in Fig. 4°(
~0.2006). The nonlinear terms coming from the discrete
provided that and nonlocal model all contribute to tHe™ ! term in Eq.
(39). If '=0, v;—< and the asymptotic expansion of the
K= Kg=2. (39 solution assuming;=0(1) is no more valid.

We may conclude by noting that the presence of nonlinear
which is the coexistence condition as given by the mean-fielgpropagation terms modify locally the relative stability be-
approximation. In order to find the effect afas it deviates tween the two considered states. This is further illustrated by
from x, we seek for a solution in the form of a slowly multiplying both sides of Eq(6) by U’(z) and subsequently
propagating wave, expressed as a perturbative series in  integrating overz from —« to +«. In the usual mean-field
limit, the velocity is then given by

C=Co(2)=

c=cog(z)+ecqy(2)+---,
Ug/lAp: Z/{[Cl]_Z/{[CSJ
ro +oo
f [U'(2)]%dz

v=gvqt---, K=2+eKkit---. (35

Inserting Eqg.(35) into Eqg. (31) and equating to zero the
coefficients of each power af one obtains an equation for

¢, in the form and thus the sign of s, is directly related to the relative
1 stability given by the difference of the kinetic potentials
" taken atc, andcs, respectively. On the other hand, when
—1+6c,—6c3)c,+ = I'cy= e 31 = : e
(=1+6co=6co)cy 2 Fei=R, (36) considering the generic evolution law, one obtains
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Uc,]-Ucs] ing of t_he observed deviation;: asa r_ulle, 'ghe nonlinear spatial
i terms induce locally a nontrivial modification of the stability
f [U’(2)]%dz of the homogeneous steady states. _ o
— Our analysis can be extended in several directions. A

comprehensive study of the discretized [E2). and its con-
tee tinuous limit[Eg. (4)] remains to be done. It would also be
’ 3 n ’
f - [9(U@)IV"(2)]"+D(U(2)U"(2)U"(2)]dz desirable to clarify their status from the standpoint of ther-
- — modynamics and statistical mechanics, including the condi-
f [U'(2)]%dz tions of existence of a potential functional generating the
— evolution equations.

o . ) From the point of view of the applications our results
indicating that the direction of propagation of the waves alsq.q|q provide the basis for the understanding of certain un-
depends on the nonlocal, nonlinear terms. This could be se€Qy nected results obtained in experiments and microscopic
as the intrinsic cause of the discrepancies observed whefimylations of surface processes, like the propagation of
relying on the predictions made in the mean-field limit. ~\yayes and the formation of clusters in the case of reactions
_ T_he stak_Jllllzatlon of a meta_stable state found in our a”alybetween immobile adsorbatéRefs.[15—24). In addition,
sis is reminiscent of the noise-enhanced stability of suche mogified local stability of the steady states could explain
states recently reported by some auth@sf. [34] and ref- 5 gisplacement of bifurcation points from predictions of
erences there)nOne might indeed argue that the spatial de-ihe mean-field observed in many instandée, e.g., in Ref.
grees of freedom play here the role of an “effective noise” _
coupled to the homogeneous dynamics in a sufficiently intri-" Nonlinear diffusion and discreteness are especially rel-
cate (multiplicative) manner to affect stability. On the oj[her evant in biology. The density dependence of mobility coeffi-
hand, there are major differences related to the nonexistencgents as they appear in the traditional reaction-diffusion set-
of potential in the present work, contrary to RE34]. Fur-  ing of certain problems in population dynamics accounts for
ther analysis is necessary to determine whether the two phed_- variety of effects, such as crowding and chemotéSis
nomena are merely analogous or, rather, share some quaniizyond this rather classical effect our analysis suggests that
tative features. the reaction-diffusion equations usually employed in, among
others, ecology and epidemic0—12, population dynamics
V. CONCLUSIONS [27-30, or bacterial growth31,32] need to be amended

We have investigated the role played by nonlinear and"’hen .the mobility of the species mvolyed .becomes low. Fi-
nonlocal reactive dynamics in the propagation of waves orpa”y’ n _several _problem_s of_mterest n b!0|0@5_.7]' the_
one-dimensional lattices. We have shown that the form of"oPagation of information involves chains of immabile
communication induced by such interactions introduces timé’.nItS (I'ke cells or neuron)sa'md cou]d thus rely not qnly on
and space scales which could radically differ from those exg'ﬁyfSlon but also on direct interactions between neighboring
pected when only diffusive transport is considered. In par_ent|t|es[33].
tlcglar, the examples studied show that the valug of Fhe ve- ACKNOWLEDGMENTS
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