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Propagating waves in one-dimensional discrete networks of coupled units
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We investigate the behavior of discrete systems on a one-dimensional lattice composed of localized units
interacting with each other through nonlocal, nonlinear reactive dynamics. In the presence of second-order and
third-order steps coupling two or three neighboring sites, respectively, we observe, for appropriate initial
conditions, the propagation of waves which subsist in the absence of mass transfer by diffusion. For the case
of the third-order~bistable! model, a counterintuitive effect is also observed, whereby the homogeneously less
stable state invades the more stable one under certain conditions. In the limit of a continuous space the
dynamics of these networks is described by a generic evolution equation, from which some analytical predic-
tions can be extracted. The relevance of this mode of information transmission in spatially extended systems of
interest in physical chemistry and biology is discussed.

DOI: 10.1103/PhysRevE.69.036203 PACS number~s!: 05.45.2a, 04.30.Nk, 87.18.Pj
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I. INTRODUCTION

The origin and modeling of wave propagation in pure
dissipative systems as opposed to systems possessing i
encountered in mechanics, electromagnetism and fluid
namics, has attracted wide interest and motivated a la
amount of theoretical and experimental studies. Typica
these studies are concerned with the behavior of network
localized nonlinear active units such as well-stirred chem
reactors@1–3#, living cells @4–7#, or individuals in an eco-
system@8–12# which are coupled in space by diffusive tran
port. In the continuous space limit the dynamics of su
systems reduces to a set of reaction-diffusion equatio
There exists an array of analytic and numerical tools, star
from the classical work of Kolmogorov, Petrovski, and Pis
ounov @13#, allowing for a good understanding of the ons
and of the essential quantitative properties of the wave fro
and related phenomena generated by these equations de
ing on the values of the parameters, the initial and the bou
ary conditions@9,14#.

In this article we explore the behavior of discrete syste
for which spatial communication between the constitut
elements of the network does not entirely rely on diffusion
any other classical mass transport. Reactive dynamic
such systems is not purely local, but involves the state
neighboring units as well. In opposition to the classical p
cess of mass transport, the precise form of this new sp
coupling depends on the mechanistic details of the dyna
cal process considered and is thus expected to be nonl
and system dependent. A typical example giving rise t
coupling of this kind is provided by reactions on low
dimensional supports encountered, for instance, in heter
neous catalysis@15–24#. The behavior of these systems c
often be mapped into a spinlike dynamics, for which the
exists a rich literature from statistical physics, particularly
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the context of phase transitions@25#.
So far the role of this particular form of spatial couplin

in the onset of nontrivial spatiotemporal dynamics has
been studied systematically. Our main objective will be
shed some light on the possible influence of such nonlo
reactive processes on the propagation of waves. To this
we compare three levels of description: the classical ma
action ~MA ! dynamics, the discrete, nonlocal~DNL! evolu-
tion laws, and the continuous space limit of the DNL ra
equation, hereafter referred to as continuous nonlocal~CNL!
dynamics. We focus on the case of one-dimensional, o
species models with interactions involving only first neig
bors of each site, but the extension to more intricate syst
is straightforward.

The general formulation is presented in Sec. II. Spec
emphasis is placed on the spatially continuous limit of
evolution equation~the CNL equation!, from which some
useful analytical results can be extracted. As a first illust
tion, a second-order Schlo¨gl-Fisher model involving two
neighboring sites of the network is studied in Sec. III. Sin
this system admits one stable and one unstable state in
homogeneous limit, one expects the propagation of wa
for appropriate initial conditions. We show that the reacti
coupling is equivalent to a nonlinear effective diffusion th
modifies the shape and the velocity of the propagating fro
Of special interest is the existence of propagation of wave
the total absence of diffusion. We next consider in Sec. IV
third-order model giving rise to bistability. The effects ass
ciated with nonlocal dynamics are here even more surpris
since the direction of propagation of the waves is rever
when diffusion is low. We give for this unexpected feature
analytical interpretation based on a perturbative developm
of the aforementioned CNL evolution equation. The ma
conclusions and the possible implications and further de
opments are summarized in Sec. V.

II. GENERAL FORMULATION

We consider in this work one-dimensional networks co
posed of a large numberN of interacting units. The state o
©2004 The American Physical Society03-1
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each of the localized units can be modified byr different
elementary processes involving adjacent sites,

(
a

(
j 521

j 511

na,r~ i 1 j !Xa~ i 1 j !

→
kr

(
a

(
j 521

j 511

na,r* ~ i 1 j !Xa~ i 1 j !

r51, . . . ,r ,

a51, . . . ,n,

i 51, . . . ,N. ~1!

HereXa( i ) represents the population of speciesa in the unit
i. The j ’s are the first neighbors ofi andna,r( i 1 j ), na,r* ( i
1 j ) are the local stoichiometric coefficients of, respective
reactant and producta for the elementary step considere
The evolution of the local state variableca( i ,t) ~such as, for
example, the local concentration ofXa) at each site can be
described by a differential-difference equation containin
nonlocal interaction termha and, if the elements are free t
move on the lattice, an additional coupling by ordinary d
fusion,

d

dt
ca~ i ,t !5ha„$ca~ i ,t !%,$ca~ i 61,t !%…

1
G

2
@ca~ i 11,t !1ca~ i 21,t !22ca~ i ,t !#,

~2!

whereG is the hopping probability. The specific form ofha
describes how the state of the sitei is modified by the dif-
ferent elementary processes. In the sequel it will be mode
by an extended, nonlocal mass-action law

ha„$ca~ i ,t !%,$ca~ i 61,t !%…

5(
r

kr@na,r* ~ i !2na,r~ i !#

3)
a8

)
j 521

j 511

@ca8~ i 1 j ,t !#na8,r( i 1 j ). ~3!

For the sake of simplicity, we limit ourselves from now on
two-species models with conservation of the total concen
tion. There is, therefore, only one active species, the sec
one being related to the vacant sites of the lattice, but
analysis could be extended to more intricate schemes.

To obtain some analytic insight it will be useful to co
sider a continuous-space approximation of Eq.~2!, taken by
introducing the spatial coordinater 5 ia, wherea is the lat-
tice parameter, i.e., the distance between two first neighb
and supposing that this parameter can be taken small in c
parison with the total size of the system or with the char
03620
,
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teristic scale at which the concentration varies apprecia
Under these conditions, one can expand the local concen
tion in the form

c~r 6a,t !'c~r ,t !6a¹c~r ,t !1
a2

2
¹2c~r ,t !1•••.

Keeping the terms up to the second order ina, one obtains an
evolution equation of the form

]

]t
c~r ,t !5 f „c~r ,t !…1g„c~r ,t !…@¹c~r ,t !#2

1D„c~r ,t !…¹2c~r ,t ! ~4!

referred to subsequently as the CNL evolution equation.
understand the meaning of this equation we recall the fo
of traditional evolution laws as deduced from the mean-fi
approximation,

]

]t
c~r ,t !5 f „c~r ,t !…1D¹2c~r ,t !. ~5!

For the systems considered here@a single dependent variabl
c(r ,t)] this evolution law can be derived from a potenti
functional

]

]t
c~r ,t !52

d

dc~r !
F@c~r ,t !#,

F@c~r ,t !#5U@c~r ,t !#2E 1

2
D@¹c~r ,t !#2dr,

whereU@c(r ,t)#52* f @c(r ,t)#dc(r ,t) is the kinetic poten-
tial, reducing near equilibrium to the product of a free ene
function and an Onsager coefficient. In the case of multis
bility, the state with lowestU@c(r ,t)# is the most stable state
and the other states are metastable. We clearly recogniz
Eq. ~4! corrections to the usual mean-field evolution law
~5!. Comparing these equations, we note that they both c
prise a local MA evolution lawf „c(r )… and a diffusion term.
This term is characterized by a diffusion coefficientD which
is essentially constant in the mean-field equation,
concentration-dependent in Eq.~4!, typically involving the
sum of the traditional diffusion coefficient and of contrib
tions arising from the nonlocal dynamics. Finally, the CN
equation displays in its right-hand side an extra dissipa
term g„c(r ,t)…@¹c(r ,t)#2. A similar term appears in the de
terministic limit of the KPZ equation@26#. There are how-
ever some substantial differences: the presence of a
dependent coefficient multiplying the Laplacian and gradi
square terms and the scalar term reflecting a nontrivial lo
dynamics. Finally, note that contrary to the mean-field eq
tion, the evolution law~4! cannot in general be derived from
a potential.

Before switching to the analysis of specific classes
models, we compile some general conclusions about the
tinuous limit ~4!, in connection with wave propagation
3-2
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Using standard techniques, we introduce the change of v
ablesr→r 2vt, wherev is a constant velocity. Equation~4!
then becomes

2vU8~z!5 f „U~z!…1g„U~z!…@U8~z!#21D„U~z!…U9~z!,
~6!

where U(z)5c(r 2vt,t) and 8 denotes derivative with re
spect toz. This equation can be mapped into a dynami
system involving the two variablesU(z)5c(r 2vt,t) and
V(z)5U8(z), described by the following ordinary differen
tial equations:

H U8(z)5V(z)

V8(z)5[ 2vV(z)2g„U(z)…V(z)2

2 f „U(z)…]/D„U(z)….

~7!

Provided thatD(U(z))Þ0, the linear stability of the steady
states (Ust ,Vst)5(ci ,0), with f (ci)50, can be easily tested
and to each state we may associate the two eigenvalue
the corresponding Jacobian matrix,

v i52
v

2D~ci !
6

1

2
A v2

D~ci !
2

24
f 8~ci !

D~ci !
, ~8!

wheref 8(ci) is the first derivative off „U(z)… with respect to
U(z), taken atU(z)5ci . This quantity will prove useful in
estimating the minimal velocity of waves between unsta
and stable states, in comparison with the mean-field pre
tions where the diffusion coefficient has no dependence
ci . Note that the linear stability of the fixed points does n
involve explicitly the dissipative termg„U(z)….

In the following two sections we consider two prototyp
cal systems in which unexpected behavior of front propa
tion is observed, and show how these phenomena are
duced by the nonlocal dynamics.

III. WAVE FRONTS BETWEEN STABLE
AND UNSTABLE STATES

We first investigate an irreversible discrete, two-spec
Schlögl-Fisher model described by the mechanism

X2~ i !1X1~ i 61!→X1~ i !1X1~ i 61! k1 , ~9!

X1~ i !→X2~ i ! k2 , ~10!

X1~ i !1X2~ i 61!
X2~ i !1X1~ i 61! G. ~11!

The first step describes an autocatalytic process produ
X1 , the second one a simple decomposition, and the t
step an exchange reaction. Following the conservation
introduced in Sec. II,X1 andX2 are here to be interpreted a
respectively, the population of sites of a lattice filled wi
reactantX1 and the empty sites. In the terminology of su
face reactions, e.g., Eq.~9! can be seen as a cooperati
adsorption, Eq.~10! as a spontaneous desorption, and E
~11! as diffusion~random walk! induced mass transport. Th
corresponding local concentrations satisfyc1( i )512c2( i ),
03620
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reducing the problem to a one-species model. The D
equation corresponding to the mechanism reads

d

dt
c~ i !5

k1

2
„12c~ i !…@c~ i 11!1c~ i 21!#2k2c~ i !

1
G

2
@c~ i 11!1c~ i 21!22c~ i !# ~12!

5k1c~ i !„12c~ i !…2k2c~ i !

1FG2 1
k1

2
„12c~ i !…GDc~ i !, ~13!

wherec( i )5c1( i ) andDc( i ) denotes the discretized Laplac
ian. The 1/2 factors before the autocatalytic and diffus
steps come from the fact that the nearest neighbor to the r
or to the left contribute with equal probability. The form o
this evolution law allows one to understand how the discre
ness of the network, together with the nonlocal characte
the reactive events, is indeed responsible for the appear
of a concentration-dependent diffusion coefficient in Eq.~4!.

In the homogeneous limit, and as long ask1.k2 , Eq.~12!
admits one stable steady state„c15(k12k2)/k1… and one
unstable steady state (c250). In the corresponding spatiall
extended system, if only theGa2/2 term were present in the
coefficient of the second derivative, one would obtain a wa
propagating from left to right if the lattice is initially pre
pared so that

c~r ,0!5c1 as r→2`, ~14!

c~r ,0!5c2 as r→1`. ~15!

Moreover, we know that if the front between these two sta
is sharp enough att50, the wave propagates with a give
minimal velocity. Figure 1 depicts the composition profile
a result of the numerical solution of such a reduced form
Eq. ~12! ~full line! along with a numerical solution of the ful

FIG. 1. Shape of the front obtained, respectively, from the d
crete localized rate equation~MA ! and the discrete nonlocal dynam
ics ~DNL! for the Sclho¨gl-Fisher model. The spatial variable isi
2vmint, i.e., we are in the comoving frame in a discrete netwo
composed of 10 000 sites, with periodic boundaries.k151.0, k2

50.1, G is here 0.01. The initial condition is as described in Eq
~14! and ~15!, and dimensionless units are used.
3-3
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Eq. ~12! itself ~dashed lines! on a discrete lattice subject t
an initial condition in the form of a Heaviside function. W
see that the wave character of the solution subsists, but
the profile of the front is modified.

In order to assess the relative roles of classical diffus
and of discrete delocalized dynamics in the wave propa
tion, we resort to the continuous limit of Eq.~13! described
by

]c

]t
5k1c@12c#2k2c1FGa2

2
1

k1a2

2
~12c!G¹2c.

~16!

Note the absence of the gradient square term expecte
appear in the most general case@Eq. ~4!#. In the two-
dimensional phase space„U(z),V(z)… introduced in Sec. II,
the dynamical system in which this equation reduces adm
two fixed points: (c1,0) and (0,0), whose stability is dete
mined by

vc1
52

v
2D~c1!

6
1

2
A v2

D~c1!2
24

f 8~c1!

D~c1!
,

v052
v

2D~0!
6

1

2
A v2

D~0!2
24

f 8~0!

D~0!
.

Since f 8(c1),0 andD(c1).0, the corresponding state is
saddle point. The nature of the other fixed point depends
the sign ofD ~the discriminant inside the square root! and
since f 8(0).0 we have a stable node ifD>0, and a stable
focus otherwise. There are thus heteroclinic trajectories li
ing the two steady states in this phase space. We note
U(z) must be positive so that the system cannot ‘‘spi
down’’ to (0,0), and thus thatD should in fact be non-
negative. This condition gives us the minimal velocity

vmin
CNL52aA~k12k2!FG1k1

2 G . ~17!

Note that in classical mean field, MA rate equations the d
fusion coefficient is simplyGa2/2, leading to

vmin
MA52aA~k12k2!

G

2
. ~18!

A striking difference in the behavior of these minimal veloc
ties is the presence of waves propagating with a given sp
in the total absence of diffusion (G50), when only nonlocal
reactive dynamics is considered. The numerical integra
~Fig. 2! of the discrete equation~13! fully confirms this con-
clusion. We have here a reaction-induced propaga
mechanism to which one may associate a concentrat
dependent effective diffusion coefficient subsisting as long
the second-order reaction takes place, even when the
ping probability toward adjacent units is strictly zero.
other words, in such systems, reaction can be seen as b
itself a mode of spatial communication. We note that in
continuous limit this effect is penalized by a factora2 which
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was previously supposed to be small. We suggest that
~16! can nevertheless be regarded as a generic equa
wherea plays the role of a parameter just likek1 andk2 .

IV. WAVE FRONTS BETWEEN TWO STABLE STATES

We consider now a scheme including a third-order step
addition to the bimolecular ones studied in the preced
section,

X2~ i !1X1~ i 61!→X1~ i !1X1~ i 61! k1 , ~19!

X1~ i !1X2~ i 11!1X2~ i 21!

→X2~ i !1X2~ i 11!1X2~ i 21! k2 , ~20!

X1~ i !1X2~ i 61!
X2~ i !1X1~ i 61! G, ~21!

hereafter referred as ‘‘trimolecular-bimolecular’’ model, an
whereX1 , X2 can be interpreted in a similar way as befor

A. Formulation and numerical results

Taking into account thatc1( i )1c2( i )51, the correspond-
ing classical MA rate equation reads in its continuous lim

]

]t
c5k1c~12c!2k2c~12c!21

Ga2

2
¹2c. ~22!

It displays a cubic local evolution law admitting three hom
geneous steady states ifk2>k1 : c151, andc350 which are
stable, andc25(k22k1)/k2 which is unstable. The analysi
of the kinetic potentialU@c# shows thatc3 is more stable
thanc1 if k2.2k1 , and vice versa. Owing to the cubic form
of f (c) there exists a unique propagation velocity of the fro
between these two stable states in the case of a spa
extended system. If the initial condition is such that

c~r ,0!5c1 as r→2`, ~23!

c~r ,0!5c3 as r→1`, ~24!

FIG. 2. Evolution ofvmin as a function ofG, obtained from the
integration of Eq.~12! ~dashed line!, from the analytical prediction
@Eq. ~17!# with a51 ~crosses!, and from classical discrete MA
equations~plain line!. Parametersk1 , k2 , initial condition, units
and system size are as shown in Fig. 1.
3-4
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a wave will propagate with velocity

vprop
MA 5Ak2Ga2

4 S 2k12k2

k2
D . ~25!

One can check that, ifk2.2k1 , vprop
MA is negative, which

means that the more stable statec3 invades the region with
coveragec1 .

The discrete and nonlocal model is on the other ha
governed by the evolution equation

d

dt
ci5

k1

2
~12ci !~ci 111ci 21!2k2ci~12ci 11!~12ci 21!

1
G

2
~ci 111ci 2122ci ! ~26!

whose continuous limit~up to ordera2) reads

]

]t
c5k1c~12c!2k2c~12c!21a2k2c~¹c!2

1a2FG2 1
k1

2
~12c!1k2c~12c!G¹2c. ~27!

In addition to a density-dependent diffusion coefficient t
equation displays a nonlinear ‘‘friction’’ term of the form
a2k2c(¹c)2 as expected from Eq.~4!. One can easily check
that, as anticipated in Sec. II, owing to the nonlinear spa
coupling induced by reaction Eq.~26! does not share the
property of the mean-field Eq.~22! to derive from a poten-
tial. Furthermore, in absence of mass transfer by diffus
(G50) it admits a pronounced multiplicity of inhomoge
neous steady sates, corresponding to isolated lattice site
cupied byX1 interrupted by islands of empty sitesX2 com-
prising at least the first neighbors of the occupied sites.

Figure 3 depicts the result of numerical integration of E
~22! ~full line! and Eq. ~26! on a discrete lattice~dashed
line!. As can be seen waves with a given front shape

FIG. 3. Shape of the front between the two stable states of
trimolecular-bimolecular model, withk150.1, k250.25, andG
50.1 ~the size is the same as in Figs. 1 and 2!. The results are
obtained from the discretized version of mass-action rate Eq.~22!
~MA ! and the discrete nonlocal dynamics@DNL, Eq. ~26!#. The
initial condition is as in Eqs.~23! and~24!, dimensionless units are
in force and the network is composed of 10 000 sites.
03620
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constant velocity are indeed observed. On the other ha
when the full discrete system dynamics is considered,
direction of propagation can be reversed compared to tha
the traditional mean-field waves when classical diffusion
weak, as seen in Fig. 4. Specifically, for a given initial co
dition of the lattice, considerk2.2k1 . The statec3 should
then be the most stable state and invade the region wher
concentration isc1 , the velocity of the front being negative
In contrast, we observe that for small hopping probabilityG
in the discrete dynamics thehomogeneously less stable sta
invades the other one, while the usual behavior is recove
for high diffusion probability. The classical mean-field ra
equations are thus inadequate in this case, since they pr
exactly the opposite of what is observed in a certain pa
metric region.

The origin of this discrepancy is to be sought in the s
tem’s geometry. With the initial condition chosen~network
fully covered on one side and empty on the other side! and in
the total absence of diffusion, particles located at the bou
ary or within the fully covered zone cannot desorb throu
the trimolecular step. The system behaves as if the first
tocatalytic step only were effective~ratek1). If so, one ex-
pects the wave to travel indeed in the observed direct
sincec51 is then the only stable state. If this simple exp
nation holds, one should expect that the wave propagate
predicted by the mean-field if only one full site is initiall
present in an otherwise empty surface, or if the dynam
takes place on a lattice of higher connectivity allowing f
favorable configurations for the trimolecular step. Numeri
investigations~not shown here! indicate that it is indeed so
or at least that the direction of propagation is as previou
expected.

B. Analytical approach

We may take advantage of the continuous limit in order
gain an analytical understanding of the front propagation
one space dimension and after eliminatinga by redefining
the space variable (r→r /a), Eq. ~27! becomes

e
FIG. 4. Propagation velocity as a function ofG for the TBM

model, taken from the MA predictions@Eq. ~25!# ~full line! and
from integration of the DNL equation~26! ~dashed line and
crosses!. The parametersk1 and k250.25, the initial condition,
units and the size of the system are identical to those in Fig. 3
3-5
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]

]t
c5c~12c!@k12k2~12c!#1k2c~¹c!2

1
1

2
@G1k1~12c!12k2c~12c!#¹2c. ~28!

We propose to determine an asymptotic approximation of
front solution valid for small values ofk1 and k2 . Specifi-
cally, we introduce the small parameter« andk5O(1) de-
fined by

«[k1 and k25«k, ~29!

and seek for a traveling wave solutionc5c(z,«), wherez is
given by

z[A«r 2v«t. ~30!

In terms of Eqs.~29! and ~30!, Eq. ~28! can be rewritten as

2vc85c~12c!@12k~12c!#1«kcc821
1

2
@G1«~12c!

12«kc~12c!#c9, ~31!

where prime means differentiation with respect toz. Without
loss of generality, we consider the boundary conditions
troduced earlier

c~2`!51 and c~`!50. ~32!

Setting «50 reduces Eq.~31! to the Fisher-Kolmogorov
equation with cubic nonlinearity and constant diffusion. T
mean-field description is therefore recovered in this limit.
one further setsv50, Eq.~31! admits the simple front solu
tion joining the two stable states

c5c0~z!5
1

11exp~A2G21z!
~33!

provided that

k5k052. ~34!

which is the coexistence condition as given by the mean-fi
approximation. In order to find the effect ofk as it deviates
from k0 we seek for a solution in the form of a slowl
propagating wave, expressed as a perturbative series in«,

c5c0~z!1«c1~z!1•••,

v5«v11•••, k521«k11•••. ~35!

Inserting Eq.~35! into Eq. ~31! and equating to zero th
coefficients of each power of« one obtains an equation fo
c1 in the form

~2116c026c0
2!c11

1

2
Gc195R, ~36!
03620
e

-

f

ld

where the right-hand sideR displays the nonlinear terms gen
erated by discreteness and nonlocality. It is given by

R[2v1c081k1c0~12c0!222c0~c08!2

2
1

2
~12c0!~114c0!c09 . ~37!

Note that the left-hand side of Eq.~36! admits the nontrivial
solutionc15c08 . Solvability of Eq.~36! ~a bounded solution
for z→6`) then requires the condition

E
2`

`

R~z!c08dz50. ~38!

Using Eqs.~37! and ~33! and evaluating the integral in Eq
~38!, we obtain an equation for the velocity given by

v152
1

2
AG

2
~k12G21!. ~39!

We note that for largeGv1 is negative and proportional to
AG. This can be expected from Eq.~28! since the diffusion
coefficient is constant in this limit. The new point is howev
that v1 may change sign asG decreases, in agreement wi
the numerical findings depicted in Fig. 4. Specifically,v1
changes sign atG5Gc where

Gc5k1
21and k1.0. ~40!

The second condition implies thatk2.2k1 , a condition that
we discussed in the beginning of Sec. IV. The values of
parameters used for the numerical study in Fig. 4 arek1
50.1 andk250.25 meaning, using Eq.~29!, «50.1 andk
52.5. From the expansion ofk in Eq. ~35!, we determine
k155. Then from Eq.~40!, we obtainGc50.20 . . . which is
very close to the numerical estimate in Fig. 4 (Gc
'0.2006). The nonlinear terms coming from the discr
and nonlocal model all contribute to theG21 term in Eq.
~39!. If G→0, v1→` and the asymptotic expansion of th
solution assumingv15O(1) is no more valid.

We may conclude by noting that the presence of nonlin
propagation terms modify locally the relative stability b
tween the two considered states. This is further illustrated
multiplying both sides of Eq.~6! by U8(z) and subsequently
integrating overz from 2` to 1`. In the usual mean-field
limit, the velocity is then given by

vprop
MA 5

U@c1#2U@c3#

E
2`

1`

@U8~z!#2dz

and thus the sign ofvprop
MA is directly related to the relative

stability given by the difference of the kinetic potentia
taken atc1 and c3 , respectively. On the other hand, whe
considering the generic evolution law, one obtains
3-6
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vprop
CNL5

U@c1#2U@c3#

E
2`

1`

@U8~z!#2dz

2

E
2`

1`

@g„U~z!…@U8~z!#31D„U~z!…U9~z!U8~z!#dz

E
2`

1`

@U8~z!#2dz

indicating that the direction of propagation of the waves a
depends on the nonlocal, nonlinear terms. This could be s
as the intrinsic cause of the discrepancies observed w
relying on the predictions made in the mean-field limit.

The stabilization of a metastable state found in our ana
sis is reminiscent of the noise-enhanced stability of s
states recently reported by some authors~Ref. @34# and ref-
erences therein!. One might indeed argue that the spatial d
grees of freedom play here the role of an ‘‘effective nois
coupled to the homogeneous dynamics in a sufficiently in
cate~multiplicative! manner to affect stability. On the othe
hand, there are major differences related to the nonexiste
of potential in the present work, contrary to Ref.@34#. Fur-
ther analysis is necessary to determine whether the two
nomena are merely analogous or, rather, share some qu
tative features.

V. CONCLUSIONS

We have investigated the role played by nonlinear a
nonlocal reactive dynamics in the propagation of waves
one-dimensional lattices. We have shown that the form
communication induced by such interactions introduces t
and space scales which could radically differ from those
pected when only diffusive transport is considered. In p
ticular, the examples studied show that the value of the
locity, the shape of the front as well as the direction
propagation itself can differ from the predictions made us
the usual reaction-diffusion evolution laws. The analysis
the evolution equations for such systems reveals the pres
of process-dependent nonlinear spatial terms, highligh
the role played by nonlocal dynamics as a specific mean
spatial communication. The spatially continuous limit of t
discrete evolution laws allows for an analytical understa
s
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ing of the observed deviations: as a rule, the nonlinear spa
terms induce locally a nontrivial modification of the stabili
of the homogeneous steady states.

Our analysis can be extended in several directions
comprehensive study of the discretized Eq.~2! and its con-
tinuous limit @Eq. ~4!# remains to be done. It would also b
desirable to clarify their status from the standpoint of th
modynamics and statistical mechanics, including the con
tions of existence of a potential functional generating
evolution equations.

From the point of view of the applications our resu
could provide the basis for the understanding of certain
expected results obtained in experiments and microsc
simulations of surface processes, like the propagation
waves and the formation of clusters in the case of reacti
between immobile adsorbates~Refs. @15–24#!. In addition,
the modified local stability of the steady states could expl
the displacement of bifurcation points from predictions
the mean-field observed in many instances~like, e.g., in Ref.
@24#!.

Nonlinear diffusion and discreteness are especially
evant in biology. The density dependence of mobility coe
cients as they appear in the traditional reaction-diffusion s
ting of certain problems in population dynamics accounts
a variety of effects, such as crowding and chemotaxis@9#.
Beyond this rather classical effect our analysis suggests
the reaction-diffusion equations usually employed in, amo
others, ecology and epidemics@10–12#, population dynamics
@27–30#, or bacterial growth@31,32# need to be amende
when the mobility of the species involved becomes low.
nally, in several problems of interest in biology@5–7#, the
propagation of information involves chains of immobi
units ~like cells or neurons! and could thus rely not only on
diffusion but also on direct interactions between neighbor
entities@33#.
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